Accéder au contenu principal
The cardiac cycle is the performance of the human heart from the beginning of one heartbeat to the beginning of the next. It consists of two periods: one during which the heart muscle relaxes and refills with blood, called diastole (/dˈæstəli/), followed by a period of robust contraction and pumping of blood, dubbed systole (/sɪsˈtəli/). After emptying, the heart immediately relaxes and expands to receive another influx of blood returning from the lungs and other systems of the body, before again contracting to pump blood to the lungs and those systems. A normally performing heart must be fully expanded before it can efficiently pump again. Assuming a healthy heart and a typical rate of 70 to 75 beats per minute, each cardiac cycle, or heartbeat, takes about 0.8 seconds to complete the cycle.[2]
Cardiac cycle
CG Heart.gif
OrganismsAnimalia*
Biological systemCirculatory system
HealthBeneficial
ActionInvoluntary
MethodBlood is allowed to enter relaxed ventricle chamber from vein through venous valve. Heart muscle contracts ventricle chamber and blood is expelled through arterial valve to artery.
OutcomeCirculation of blood
Frequency60–100 per minute (Humans)
Duration0.6–1 second (Humans)
*Animalia with the exception of PoriferaCnidariaCtenophoraPlatyhelminthesBryozoanAmphioxus.
The cycle diagram depicts one heartbeat of the continuously repeating cardiac cycle, namely: ventricular diastole followed by ventricular systole, etc.—while coordinating with atrial systole followed by atrial diastole, etc. The cycle also correlates to key electrocardiogramtracings: the T wave (which indicates ventricular diastole); the P wave (atrial systole); and the QRS 'spikes' complex (ventricular systole)—all shown as color purple-in-black segments.[1]
The Cardiac Cycle: Valve Positions, Blood Flow, and ECG
The parts of a QRS complex and adjacent deflections. Re the cardiac cycle, atrial systole begins at the P wave; ventricular systole begins at the Q deflection of the QRS complex.
There are two atrial and two ventriclechambers of the heart; they are paired as the left heart and the right heart—that is, the left atrium with the left ventricle, the right atrium with the right ventricle—and they work in concert to repeat the cardiac cycle continuously, (see cycle diagram at right margin). At the "Start" of the cycle, during ventricular diastole–early, the heart relaxes and expands while receiving blood into both ventricles through both atria; then, near the end of ventricular diastole–late, the two atria begin to contract (atrial systole), and each atrium pumps blood into the ventricle 'below' it.[3] During ventricular systole the ventricles are contracting and vigorously pulsing (or ejecting) two separated blood supplies from the heart—one to the lungs and one to all other body organs and systems—while the two atria are relaxed (atrial diastole). This precise coordination ensures that blood is efficiently collected and circulated throughout the body.[4]
The mitral and tricuspid valves, also known as the atrioventricular, or AV valves, open during ventricular diastole to permit filling. Late in the filling period the atria begin to contract (atrial systole) forcing a final crop of blood into the ventricles under pressure—see cycle diagram. Then, prompted by electrical signals from the sinoatrial node, the ventricles start contracting (ventricular systole), and as back-pressure against them increases the AV valves are forced to close, which stops the blood volumes in the ventricles from flowing in or out; this is known as the isovolumic contraction stage.[5]
Due to the contractions of the systole, pressures in the ventricles rise quickly, exceeding the pressures in the trunks of the aorta and the pulmonary arteries and causing the requisite valves (the aortic and pulmonaryvalves) to open—which results in separated blood volumes being ejected from the two ventricles. This is the ejection stage of the cardiac cycle; it is depicted (see circular diagram) as the ventricular systole–first phasefollowed by the ventricular systole–second phase. After ventricular pressures fall below their peak(s) and below those in the trunks of the aorta and pulmonary arteries, the aortic and pulmonary valves close again—see, at right margin, Wiggers diagram, blue-line tracing.
Now follows the isovolumic relaxation, during which pressure within the ventricles begin to fall significantly, and thereafter the atria begin refilling as blood returns to flow into the right atrium (from the vena cavae) and into the left atrium (from the pulmonary veins). As the ventricles begin to relax, the mitral and tricuspid valves open again, and the completed cycle returns to ventricular diastole and a new "Start" of the cardiac cycle.[6][7]
Throughout the cardiac cycle, blood pressureincreases and decreases. The movements of cardiac muscle are coordinated by a series of electrical impulses produced by specialised pacemaker cells found within the sinoatrial node and the atrioventricular node. Cardiac muscle is composed of myocytes which initiate their internal contractions without applying to external nerves—with the exception of changes in the heart rate due to metabolic demand.[8]
In an electrocardiogram, electrical systole initiates the atrial systole at the P wave deflection of a steady signal; and it starts contractions (systole) of the ventricles at the Q deflection of the QRS complex. (Completing the P wave represents the end of the ventricular diastole and the start of the ventricular systole—see cycle diagram).

Commentaires

Posts les plus consultés de ce blog

Main Navigation How To Always Stay Motivated. By admin On July 29, 2018 In Motivation / Mindset Facebook Tweet Google+ Lots of people have problems staying motivated, even when the conditions are good. So how can people stay motivated if things are not going your way, you have a couple of setbacks, you have lots of things to do, the washing machine is broken etc. Individual motivation is the answer to maintaining most aspects of life. When you are not motivated about something, you prefer to waste your time on certain things, like television. If you are motivated, you are likely to go for your personal and professional goals with a passion. However, everyone has a lack of motivation from time to time, even the most successful people. Here are some tips to keep motivated: #1: Make sure to visualize your goals frequently. You should see it in your mind, feel it and believe it. When you visualize frequently you really will believe it is real. This way you also keep reminding yours